Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Virol Methods ; 290: 114084, 2021 04.
Article in English | MEDLINE | ID: covidwho-1065422

ABSTRACT

The use of monoclonal neutralizing antibodies (mNAbs) is being actively pursued as a viable intervention for the treatment of Severe Acute Respiratory Syndrome CoV-2 (SARS-CoV-2) infection and associated coronavirus disease 2019 (COVID-19). While highly potent mNAbs have great therapeutic potential, the ability of the virus to mutate and escape recognition and neutralization of mNAbs represents a potential problem in their use for the therapeutic management of SARS-CoV-2. Studies investigating natural or mNAb-induced antigenic variability in the receptor binding domain (RBD) of SARS-CoV-2 Spike (S) glycoprotein, and their effects on viral fitness are still rudimentary. In this manuscript we described experimental approaches for the selection, identification, and characterization of SARS-CoV-2 monoclonal antibody resistant mutants (MARMs) in cultured cells. The ability to study SARS-CoV-2 antigenic drift under selective immune pressure by mNAbs is important for the optimal implementation of mNAbs for the therapeutic management of COVID-19. This will help to identify essential amino acid residues in the viral S glycoprotein required for mNAb-mediated inhibition of viral infection, to predict potential natural drift variants that could emerge upon implementation of therapeutic mNAbs, as well as vaccine prophylactic treatments for SARS-CoV-2 infection. Additionally, it will also enable the assessment of MARM viral fitness and its potential to induce severe infection and associated COVID-19 disease.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antigenic Variation/genetics , Drug Resistance, Viral/genetics , SARS-CoV-2/genetics , Selection, Genetic , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Binding Sites/genetics , Binding Sites/immunology , COVID-19/virology , Chlorocebus aethiops , Humans , Phenotype , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , COVID-19 Drug Treatment
2.
J Virol Methods ; 287: 113995, 2021 01.
Article in English | MEDLINE | ID: covidwho-856941

ABSTRACT

Towards the end of 2019, a novel coronavirus (CoV) named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), genetically similar to severe acute respiratory syndrome coronavirus (SARS-CoV), emerged in Wuhan, Hubei province of China, and has been responsible for coronavirus disease 2019 (COVID-19) in humans. Since its first report, SARS-CoV-2 has resulted in a global pandemic, with over 10 million human infections and over 560,000 deaths reported worldwide at the end of June 2020. Currently, there are no United States (US) Food and Drug Administration (FDA)-approved vaccines and/or antivirals licensed against SARS-CoV-2. The high economical and health impacts of SARS-CoV-2 has placed global pressure on the scientific community to identify effective prophylactic and therapeutic treatments for SARS-CoV-2 infection and associated COVID-19 disease. While some compounds have been already reported to reduce SARS-CoV-2 infection and a handful of monoclonal antibodies (mAbs) have been described that neutralize SARS-CoV-2, there is an urgent need for the development and standardization of assays which can be used in high through-put screening (HTS) settings to identify new antivirals and/or neutralizing mAbs against SARS-CoV-2. Here, we described a rapid, accurate, and highly reproducible plaque reduction microneutralization (PRMNT) assay that can be quickly adapted for the identification and characterization of both neutralizing mAbs and antivirals against SARS-CoV-2. Importantly, our MNA is compatible with HTS settings to interrogate large and/or complex libraries of mAbs and/or antivirals to identify those with neutralizing and/or antiviral activity, respectively, against SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/immunology , Antiviral Agents/pharmacology , Neutralization Tests/methods , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , Chlorocebus aethiops , High-Throughput Screening Assays , Humans , Vero Cells , Viral Plaque Assay , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL